Главное меню сайта
Меню товаров
Популярные статьи
» Ремонт мобильных телефонов в Екатеринбурге.
» Русификация китайских телефонов в Екатеринбурге.
» Ремонт цифровых фотоаппаратов в Екатеринбурге.
» Ремонт сотовых телефонов в Екатеринбурге.
» Разблокировка 3G модемов в Екатеринбурге.

Навигация по тегам
C261, Chinese-Other, Ericsson, FAQ по iPhone, Fly, iPhone 2G, iPhone 3G, iPhone 3GS, L6, Motorola, Nec, Nokia, Nokia 6101, Samsug, Samsung, Samsung C230, Samsung X120, Sharp, Siemens M65, Sony, Sony Ericsson S600i, SonyEricsson, T720, unlock, user lock, V3x, V9, VK, Активации для GSM Боксов, код телефона, прочистка телефонов, прошивка телефонов, разблокировка телефонов, раскодировка телефонов, ремонт телефонов, русификация телефонов, снятие паролей, Список доступных Логов, Схемы

Показать все теги

Радио Оn-Line


Ремонт и Услуги » Статьи по ремонту: Глава 5. Элементы и технология поверхностного монтажа


Что такое поверхностный монтаж?

SMT - Surface Mount Technology - технология поверхностного монтажа. Является дальнейшим естественным развитием традиционной технологии монтажа элементов в отверстия - вместо отверстий стали использовать контактную площадку на поверхности печатной платы. При этом появилась возможность значительно сократить размеры элементов, автоматизировать процесс монтажа, более точно размещать интегральные схемы, резисторы и конденсаторы и снизить себестоимость производства. Технология поверхностного монтажа требует меньшего количества дорожек и позволяет увеличить расстояния между ними. Так как емкостное взаимодействие уменьшается при удалении соседних контуров, дополнительно сокращаются перекрестные помехи. Компоненты могут легко размещаться с обеих сторон платы, что увеличивает плотность размещения. SMT-пайка более производительна. При наличии требуемого оборудования процесс перепайки и замены элементов на SMT проще, чем на платах прежней технологии. SMT интегральные схемы могут удаляться и заменяться неоднократно на одной плате без повреждения интегральной схемы или платы, что нельзя сделать с 40-выводными DIP интегральными схемами.

Необходимо отметить и недостатки. Платы с SMT-компонентами предполагают специальную разработку и автоматизированное проектирование (CAD), высокие требования к допускам и качеству. Экономически оправданным методом применения SMD компонентов при сборке печатных плат является наличие оборудования автоматизации сборки. Ручная сборка в некоторых случаях недопустима. При применении SMT появляются дополнительные издержки на программирование процесса автоматизации сборки и изготовление трафаретов.

Компоненты поверхностного монтажа

Маркировка

Компоненты для поверхностного монтажа (SMD) слишком малы, чтобы на их корпусе была нанесена стандартная маркировка. Поэтому существует специальная система маркировки таких компонентов: на корпус прибора нанесен код, состоящий из двух или трех символов. На очень малых компонентах маркировка отсутствует.

Корпуса и типоразмеры

Любой элемент для поверхностного монтажа имеет металлизированные площадки, которые соединяются расплавленным припоем с соответствующими контактами печатной платы. Кроме своего прямого назначения контакты еще выполняют функцию отвода тепла. Вследствие малых размеров и веса компонентов при пайке горячим воздухом или в инфракрасной печи ярко проявляются эффект поверхностного натяжения расплавленного припоя и закон Архимеда о выталкивающей силе. Первый проявляется в том, что расплавленный припой не растекается, а стягивается в сферическую форму в области пайки. Второй - в том, что компоненты плавают на поверхности расплавленного припоя, поскольку плотность их материала ниже плотности припоя.
Пассивные компоненты просты, а на большие микросхемы стоит обратить внимание. С точки зрения монтажа их отличает расположение выводов. В мобильных телефонах чаще всего применяются микросхемы BGA - Ball Grid Array, имеющие контактные площадки, сформированные из припоя в виде шариков, расположенных квадратно-гнездовым способом на нижней поверхности микросхемы. Для правильного позиционирования микросхем BGA на плату наносят специальные маркеры. Реже применяют микросхемы с планарными выводами, т.е. выводами по бокам микросхемы.
Все компоненты поверхностного монтажа стандартизованы.

Материалы и технология пайки

Припои и пасты

Пайку используют для монтажа и демонтажа компонентов на печатную плату. Наиболее часто при пайке оплавлением применяют припои на основе сплава олово-свинец 63/37 или составы с небольшим содержанием серебра 62/36/2. Такие сплавы имеют температуру плавления около 186oC. Идеальный профиль для пайки оплавлением с использованием этих припоев имеет пиковую температуру 215 - 219oC с выдержкой 45 - 60 секунд выше точки плавления.
Главные составляющие наиболее популярного припойного сплава - олово (Sn) 63% и свинец (Pb) 37%.
Иногда используется другой сплав: Sn 62%, Pb 36%, Ag 2%. Этот припой в основном используется при пайке посеребренных деталей. Серебро, содержащееся в припое, препятствует растворению в припое серебра с поверхности некоторых компонентов.
Паяльная паста представляет собой пастообразную массу, состоящую из сферических частиц припоя и флюса связки. Свойства паяльной пасты зависят от процентного содержания металлической составляющей, типа сплава, размеров частиц припоя и типа флюса.
В соответствии с пожеланиями потребителей паяльная паста может поставляться с размерами частиц припоя от 20 - 45 мкм или от 20 - 38 мкм. Размер выбирается исходя из требований к пайке определенных компонентов.
Кроме того, в паяльных пастах обычно содержатся:
- природная канифоль/искусственная канифоль;
- растворитель для уменьшения вязкости паяльной пасты;
- активатор для очистки загрязнений поверхности металла;
- загуститель для увеличения вязкости паяльной пасты;
- добавки для уменьшения эффекта расползания пасты после печати.
Для нормальной работы с паяльной пастой желательно, чтобы температура в помещении была 22 - 28oС, а влажность не превышала 30 - 60%.

Решением европейской комиссии по законодательству использование свинца в производстве электроники запрещено с 01.01.2006 г.

Какие же сплавы предлагают производители технологических материалов для замены припоев, содержащих свинец? Наиболее близким по своим свойствам к традиционному сплаву Sn62/Pb36/Ag2 является эвтектический (однородный и легкоплавкий) сплав Sn95,5/Ag3,8/Cu0,7, который используется в паяльных пастах и трубчатых припоях. Эвтектические сплавы предпочтительны, поскольку их кристаллизация происходит в узком температурном диапазоне, при этом отсутствует смещение компонентов, в результате чего достигается более высокая надежность паяных соединений.
На сегодняшний день среди мировых производителей электроники сложилось единое мнение, что наилучшей бессвинцовой альтернативой для эвтектики Sn62/Pb36/Ag2 в аппаратуре общего и специального назначения является сплав Sn95,5/Ag3,8/Cu0,7с температурой плавления 217°C.
Некоторые производители технологических материалов предлагают паяльные пасты с температурами плавления 195°C, но они не получили широкого распространения. Припой Sn89/Zn8/Bi3, содержащийся в этих пастах, имеет температуру плавления, близкую к эвтектике Sn/Pb, однако наличие в его составе цинка приводит к ряду проблем. Припойные пасты на этой основе имеют очень короткое время жизни, требуется флюс повышенной активности, при оплавлении образуется труднорастворимая окалина, паяные соединения подвержены коррозии, требуется обязательная промывка соединений после пайки.

Монтажные флюсы

В процессе пайки флюсы обеспечивают растворение оксидов и сульфидов, защиту паяемых поверхностей от повторного окисления, снижение поверхностного натяжения припоя.
Материалы, предлагаемые в качестве флюсов для пайки электронных изделий, могут относиться к смолосодержащим и смолонесодержащим.
Основу смолосодержащих флюсов, как правило, составляет канифоль, представляющая собой смесь органических кислот. Главный компонент этой смеси - абиетиновая кислота. Органические кислоты - такие как салициловая, молочная, стеариновая, лимонная, муравьиная и т. д. - также могут быть использованы для подготовки поверхности к пайке, однако из-за их большей активности они требуют более аккуратного обращения и тщательной промывки изделий после пайки. Эти кислоты, как и некоторые их соединения, чаще используются в качестве активаторов и добавок к флюсам на основе канифоли.
Уровень кислотности флюса на основе чистой канифоли очень мал, но в результате ее растворения и в процессе нагрева при пайке происходит ее активация. Процесс активации канифоли начинается при температуре около 170 °С. При сильном нагреве (более 300 °С) происходит интенсивное разложение канифоли и потеря ее флюсующих свойств.
Предлагаемые на рынке флюсы классифицируют по степени активности следующим образом.

Тип R (от англ. rosin - канифоль) представляет собой чистую канифоль в твердом виде или растворенную в спирте, этилацетате, метиленэтилкетоне и подобных растворителях. Это наименее активная группа флюсов, поэтому ее используют для пайки по свежим поверхностям или по поверхностям, которые были защищены от окисления в процессе хранения. Эта группа флюсов не требует удаления их остатков после пайки.

Тип RMA (от англ. rosin mild activated - слегка активированная канифоль) - группа смолосодержащих флюсов с различными комбинациями активаторов: органическими кислотами или их соединениями (диметилалкилбензиламмонийхлорид, трибутилфосфат, салициловая кислота, диэтиламин солянокислый, триэтаноламин и др.). Эти флюсы обладают более высокой активностью по сравнению с типом R. Предполагается, что в процессе пайки активаторы испаряются без остатка, вследствие чего этот флюс тоже не требует отмывки. Но очевидно, что процесс пайки должен быть гарантированно завершен полным испарением активаторов. Такие гарантии может обеспечить только машинная пайка с автоматизацией температурно-временных процессов (температурного профиля пайки).

Тип RA (от англ. rosin activated - активированная канифоль). Эта группа флюсов рекламируется для промышленного производства электронных изделий массового спроса. Несмотря на тот факт, что данный вид флюса отличается более высокой активностью по сравнению с упомянутыми выше, он также не требует смывки, поскольку его остатки не проявляют видимой коррозионной активности.

Тип SRA (от англ. super activated rosin - сверхактивированная канифоль). Эти флюсы были созданы для нестандартных применений в электронике. Они могут использоваться для пайки никелесодержащих сплавов, нержавеющих сталей и материалов типа сплава ковар. Флюсы типа SRA очень агрессивны и требуют тщательной отмывки при любых обстоятельствах, поэтому их использование в электронике строго регламентировано.

Тип No-Clean (не требует смывки). Эта группа специально создана для процессов, где нет возможности использовать последующую отмывку плат или она затруднена по каким-то причинам. Основное отличие этой группы состоит в крайне малом количестве остатков флюса на плате по окончании процесса пайки.
До сегодняшнего дня наиболее распространенным растворителем является спирто-бензиновая смесь. Спирт смывает остатки канифоли, бензин - жиры и масла, в том числе жировой секрет отпечатков пальцев. Спирт образует с растворенными в нем загрязнениями азеотропную смесь, то есть испаряется вместе с ними. Бензин, испаряясь, оставляет на поверхности, растворенные в нем компоненты. Но в сочетании со спиртом его моющие свойства улучшаются. Однако основным ее недостатком является то, что она не смывает минеральные соли от прикосновений рук.

Основные принципы пайки оплавлением

Для получения качественной пайки необходим предварительный равномерный прогрев платы.
Во избежание механического разрушения компонентов скорость изменения температуры не должна превышать 5oC в секунду.
Разница температуры предварительного нагрева и температуры оплавления не должна превышать 100oC.
Пиковая температура пайки должна более чем на 30oC превышать точку плавления используемого припоя.
Температурный пик должен приходиться на 200oC - 210oC и не может превышать 260oC, поскольку это может привести к выходу компонентов из строя.
Большие компоненты или поглотители тепла будут требовать более длительных циклов нагрева.
Следует контролировать процесс естественного охлаждения после пайки. Искусственное ускорение приводит к появлению скрытого брака. Удары и перегрузки приводят к механическому повреждению компонентов.
Некоторые компоненты (например, электролитические конденсаторы с жидким электролитом) чрезвычайно чувствительны к перегреву и существенно ограничивают предельное время прохождения зоны оплавления. Например, миниатюрные керамические резонаторы могут без повреждений находиться в среде с температурой выше 200oC не более 20 с. Поэтому время экспозиции должно быть минимизировано. Встречаются компоненты, которые требуют повторения цикла пайки после остывания платы.
Особо следует отметить важность скорости изменения температуры. Слишком быстрый нагрев приводит к растрескиванию многослойных керамических компонентов - конденсаторов и резонаторов. Также уязвимы массивные и высокие компоненты.
Скорость охлаждения определяет размер кристаллов припоя - чем быстрее охлаждение, тем меньше зерно. С другой стороны, чрезмерно быстрый процесс может привести к разрушению компонентов из-за механических перенапряжений. При охлаждении компоненты подвергаются механическим перегрузкам и поэтому очень чувствительны к внешним воздействиям.
В процессе пайки компоненты подвергаются тепловым ударам. Температура пайки намного превышает максимально допустимую для компонентов температуру, поэтому для предотвращения выхода их из строя необходимо строго соблюдать основные принципы технологии пайки.

Температурный профиль оплавления. Как и во всех процессах пайки, температурный профиль является ключевым элементом успешного процесса. Сам процесс реболлинга BGA чипа достаточно прост и повторяем, гораздо больше времени отнимает настройка температурного профиля для оборудования оплавления горячим воздухом. Рекомендуемый температурный профиль изображен.

 

 

Каждый BGA чип предлагает свой температурный профиль. Начните с базового профиля, показанного ниже, внося коррективы на тип материала BGA, массу BGA чипа и его размер, и это должно принести к приемлемым результатам.
Помните о том, что настройка профиля основывается на измеренной температуре компонента. Сама температура в печи либо температура воздушного потока при работе с феном обычно от нее отличается.

Измерение температуры компонента. Для создания рабочего температурного профиля термопары размещаются в различных участках компонента, а мониторинг их показаний выполняется с помощью специального программного обеспечения, что позволяет найти оптимальный профиль оплавления компонента. Этот способ снятия показаний обеспечивает равномерность снятия показаний нагрева и минимальный термический удар для исследуемого компонента.

Настройка воздушного потока при оплавлении. Воздушный поток, обтекая компонент, заставляет его нагреваться. При неравномерном нагреве компонента возникают температурные градиенты (перепады температуры) в его составе. Большой температурный градиент влечет за собой температурный удар, который может повредить компонент.

Восстановление шариковых выводов (реболлинг) BGA-компонентов

Необходимое оборудование

- система пайки горячим воздухом или конвекционная печь;
- паяльник для снятия шариков BGA;
- защищенное от статики рабочее место;
- микроскоп (для проверки).

Методы безопасности

Вентиляция. Испарения флюса при пайке могут оказывать вред. Используйте общую или местную вытяжки на рабочем месте.

Средства личной защиты. Химикаты, используемые в процессе реболлинга, могут вызвать поражение участков кожи. Используйте соответствующие средства защиты.

Опасность свинца. Организация USEPA Carcinogen Assessment Group относит свинец и его сплавы к тератогенам, а компоненты с его применением - к классу B-2 канцерогенов.
При работе с чувствительными к статическому заряду компонентами убедитесь, что ваше рабочее место защищено от статики, для чего используйте следующие средства:
- напалечники;
- проводящие рабочий коврик или покрытие стола;
- заземленный пяточный или запястные браслеты.

Восприимчивости компонентов

Восприимчивость к влажности. Пластиковые корпуса BGA являются абсорбентами влажности. Производитель чипа обозначает уровень восприимчивости компонента на каждом корпусе. Каждый уровень восприимчивости имеет временной предел для внешнего воздействия, связанный с ним. При превышении разрешенного времени внешнего воздействия предписывается проводить сушку компонента. Стандартное время сушки - это 24 часа при 125oC. После окончания сушки компонент должен быть помещен в пакет с веществом, впитывающим влагу, что предотвратит повторное проникновение влажности в него. Подобная сушка подготовит компонент к процессу пайки.

Восприимчивость к статическому заряду. Последовательность действий по снятию, реболлингу и повторной установке компонента на печатную плату вызывает множественное количество шансов повредить компонент статическим зарядом. Старайтесь использовать соответствующие средства защиты.

Восприимчивость к температуре. BGA-компоненты восприимчивы к перепадам температуры в следующих случаях. Быстрые изменения в температуре приведут к температурному удару вследствие неравномерного распределения внутренних температур в самом чипе. Быстрый нагрев только одной стороны BGA-чипа может вызвать температурный удар на подложке чипа.
Пластиковые BGA чипы наиболее напоминают печатные платы. Их подложки состоят из закаленного стекла и обычно имеют Tg (температура стеклования) приблизительно 230oC. Свыше температуры стеклования коэффициент термического расширения начинает возрастать, вызывая внутренние температурные удары. Очень важно сохранять подложку чипа ниже данной температуры.
Предпочтительнее использовать печь конвекционного типа. Менее надежные результаты дают системы пайки пистолетного типа. Для эффективной пайки компонентов необходимо обеспечить равномерность нагрева компонентов. Небольшая скорость подачи горячего воздуха сможет уменьшить вероятность температурного удара вследствие неравномерности нагрева компонента. Слой шариковых выводов способствует изолированию контактных площадок подложки от воздуха. Время "вымачивания" в печи дает время на то, чтобы все контактные площадки равномерно смочились припоем. Когда процесс оплавления по температурному профилю завершен, шариковые выводы имеют светло-коричневый цвет. Большая температура обдува может привести к появлению темно-коричневого цвета выводов и даже черного.
Рекомендуется, чтобы BGA-компоненты никогда не нагревались более чем на 220oC. Внутренние удары возникают вследствие возникновения температурных градиентов и нагрузок внутри структуры чипа. Термические удары более заметны в процессе реболлинга, даже если присутствуют оба типа ударов. Для минимизации риска температурного удара тщательно следите за температурным циклом процесса. Равномерность нагрева является критичным фактором для минимизации ударов в чипе.

Процесс снятия шариковых выводов (деболлинг)

Существует много инструментов, которые позволяют снять остатки припоя с BGA-компонета. Они включают в себя вакуумные инструменты с горячим воздухом, паяльники с жалом и, что наиболее предпочтительно, низкотемпературные установки пайки волной (220oC). Любой из этих инструментов при правильном использовании позволяет проводить реболлинг.
Поскольку паяльники с хорошим температурным контролем пайки не так редки сейчас и относительно недороги, мы опишем процесс деболлинга с использованием паяльника с жалом. Держитесь увереннее на протяжении всего процесса деболлинга, поскольку он содержит множество потенциально опасных для чипа механических и термальных стрессов.
Инструменты и материалы:
- флюс;
- паяльник;
- изопропиловые салфетки (изопропил алкоголь);
- проводящий коврик.
Дополнительные рекомендуемые инструменты:
- микроскоп;
- вытяжка;
- защитные очки;
- ножницы.
Подготовка:
- предварительно разогрейте паяльник и перепроверьте чип на загрязнение, пропущенные контактные площадки, а также паяемость;
- наденьте напалечники;
- наденьте защитные очки.

Примечание: проведение сушки компонента для удаления влажности рекомендуется делать до выполнения его деболлинга.

Шаг 1 - нанесение флюса на чип. Положите чип на проводящий коврик, стороной контактных площадок вверх. Слишком малое количество флюса сделает процесс деболлинга затруднительным.

Шаг 2 - снятие шариков. Используя каплю расплавленного припоя на кончике жала паяльника, уберите с поверхности контактных площадок остатки припоя, в результате чего на площадках должно остаться минимальное его количество.

Шаг 3 - очистка чипа. Сразу же очистите чип с помощью салфетки, смоченной в изопропиловом спирте. Своевременная очистка чипа облегчит удаление остатков флюса. Выньте салфетку из пакета и разверните ее. Прижимая поверхность чипа с контактными площадками к салфетке, удалите с него флюс. Постепенно сдвигайте чип при протирке на более чистые участки салфетки. При очистке всегда поддерживайте противоположную сторону чипа. Не загибайте уголки чипа. Если флюса много, можно использовать вначале обыкновенную зубную щетку, смоченную в изопропиловом спирте.

Примечания: 1. Никогда не очищайте BGA чип загрязненным участком салфетки. 2. Всегда используйте новую салфетку для каждого нового чипа.

Шаг 4 - проверка. Рекомендуется проверку проводить под микроскопом. Проверяйте чистоту контактных площадок, поврежденные площадки и неудаленные шарики припоя.

Примечание: если флюс имеет коррозионные свойства, рекомендуется провести дополнительную очистку.

Шаг 5 - промывка. Хорошенько прочистите чип щеткой и промойте деионизованной водой. Это поможет смыть остатки флюса с чипа. После этого просушите чип сухим воздухом. Повторно проверьте поверхность.

Процесс нанесения шариковых выводов (реболлинг)

Инструменты и материалы:
- ремонтный трафарет;
- малярная лента;
- паяльная паста;
- ракель или скальпель;
- щетка для очистки;
- пинцет;
- печь оплавления или система пайки горячим воздухом;
- деионизированная вода.
Дополнительно рекомендуемые инструменты:
- микроскоп;
- напалечники.

Шаг 1 - совмещение чипа с трафаретом. Выберите соответствующий трафарет и поместите чип и трафарет в хорошо освещенной части рабочего места. Совместите отверстия трафарета с контактными площадками чипа. Зафиксируйте чип на трафарете кусочком малярной ленты. Малярная лента имеет бумажную основу, которая не плавится. Трафарет должен быть ровным, иначе процесс восстановления не получится.

Шаг 2 - нанесение паяльной пасты на чип. Нанесите паяльную пасту на чип, заполняя отверстия трафарета специальным ракелем или лезвием тонкого плоскозаточенного скальпеля. Убедитесь, что все отверстия трафарета заполнены паяльной пастой.

Примечание: Перед тем как начать, убедитесь, что поверхность чипа чиста.

Шаг 3 - оплавление. Поместите трафарет с чипом в горячую конвекционную печь или станцию для реболлинга горячим воздухом и начните цикл оплавления. Используемое оборудование должно быть настроено для соблюдения термопрофиля.

Шаг 4 - охлаждение. Охладите трафарет с чипом, учитывая требования термопрофиля.

Шаг 5 - аккуратно снимите чип с трафарета.

Шаг 6 - очистите чип и трафарет от остатков флюса.

Шаг 7 - промывка чипа BGA. Промойте чип деионизованной водой. Это поможет удалить маленькие частицы флюса и грязи, оставшиеся после предыдущих этапов очистки. Дайте чипу высохнуть на воздухе. Не протирайте его салфетками или тряпочками.

Шаг 8 - проверка качества нанесения выводов. Используйте микроскоп для проверки чипа на загрязнение, пропущенные шарики или остатки флюса.

Сушка чипа

Процедура сушки очень важна для того, чтобы быть уверенным, что не возникнет эффект "поп-корна" в процессе реболлинга чипа. Очень рекомендуется подвергать чип сушке перед каждой операцией реболлинга, чтобы исключить наличие влажности на дальнейший период времени.

 

 

  Покупка Продажа и Ремонт Электронных Гаджетов Девайсов Аксессуаров Мобильных Устройств Планшетов Телефонов Смартфонов Новейшей Электроники и Электрики Девайсы 2021 года Инновационная Электроника и Электротехника Купить в Екатеринбурге! Интернете Магазин   Покупка Продажа и Ремонт Электронных Гаджетов Девайсов Аксессуаров Мобильных Устройств Планшетов Телефонов Смартфонов Новейшей Электроники и Электрики Девайсы 2021 года   Покупка Продажа и Ремонт Электронных Гаджетов Девайсов Аксессуаров Мобильных Устройств Планшетов Телефонов Смартфонов Новейшей Электроники и Электрики Девайсы 2021 года